Leibniz-Rechenzentrum

der Bayerischen Akademie der Wissenschaften

Preconditioning for Data Locality

Quickly selecting nearest particles
in the Friends-of-Friends
component of Gadget

Luigi Iapichino
Leibniz-Rechenzentrum (LRZ), Garching b. Minchen, Germany
Collaborators: V. Karakasis, N. Hammer, A. Karmakar (LRZ)
in the framework of the Intel® Parallel Computing Center in Garching (LRZ — TUM)
Partners: M. Petkova, K. Dolag (USM Munchen, Germany)
Intel contributors to this presentation: CJ Newburn, Michael Brown, Ashish Jha, David Kunzman



Managing locality of data that changes over time

Types of problems and examples
e NBody - astrophysics (SWIFT, COSMOS)

e Molecular dynamics - small scale (GROMACS, NAMD, miniMD)
e Particle in cell - sub-atomic scale

e Adaptive mesh problems (FEA, Crash)



Forms of improving locality

e Work with indices, e.g. an array of indices
- Select to reduce scope of what to evaluate
- Sort to help prioritize or improve temporal locality
e Work with actual data layout
- Pared subset of data of interest, e.g. only struct members that get used
- Arranged data, for better temporal and spatial locality, including for stride 1



- Index management

e One or more levels of hierarchy of locality
- Tree where leaves are at the lowest scope
e Friends of friends component of Gadget (40% of execution time)

- Find K (295) nearest neighbors (out of 500) to compute interactions with current particle
- Create an array of indices for neighbors, without moving particle data

- Principle: condition data only as much as necessary

- Application: select Jistii<distlk, for each /<A vs. sort

gselect vs. gsort in Gadget's FoF

20-35% on IVB,
1L0E400 10-20% on KNC

[v)
1,0E-01 20%
. oo
1,0E-02 —@—qsort
= 10%
1,0E-03 —@—qselect =
(+]
1,0E-04 o I |
1 2 4 8 16 32 60 120 2

40

gselect vs. gsort 20%

- 35%
30%
25%

1,0E+02

1,0E+01

—

=
Ul
X X

Exec. time (s

Ul
2

Perf. impr. over last optim

o
X

1,0E-05
1 8 64 512 4096 32768 262144 #threads

Array size (kB) B Ivy-Bridge (affinity per socket) m MIC (scatter affinity)



Data re-layout

e Space-filling curves or even just by 3D binning

- Alternative to index management
e Principle: Be selective about what is moved when, do as little as possible

- May move some data at major time steps, and tweak faster-changing data at minor steps
e Benefits

- Increased spatial locality in cache and TLB, e.g. eliminate non-needed struct members

- Manage traversal through data to increase temporal locality, e.g. proceed to neighbors

e While you're already re-laying out data
- Rearrange AoS as SoA, perform vector loads vs. gathers
- Pad for structs if AoS, or dummy elements at infinite distance if SOA
- Load balancing, so similar numbers of neighbors span nodes
- Separate halo and core data to help with communication hiding

13.07.2015 Leibniz Supercomputing Centre



Factors determining benefits from pre-conditioning

e (osts

- Rate of particle movement determines # steps to amortize across

- Ratio of cutoff to preconditioned subset, and preconditions subset to whole
e Benefits

- Spatial and temporal locality, elimination of gathers
e Impact

- Diluted with respect to other work - computation intensity

- Benefits enhanced by repeated usage
- How the problem is partitioned

13.07.2015 Leibniz Supercomputing Centre



Principles

e Think critically about locality

What matters, e.g. select (threshold) vs. sort (total order)

How it's maintained, e.g. only parts affected

When it's maintained, e.g. incrementally, as particle data positions updated
Increasing work is ok if it significantly benefits locality, e.g. avoid conditionals

e (Consider a hierarchical approach

- Different actions at different granularities of time steps
- Arrange data to easily manage locality

13.07.2015 Leibniz Supercomputing Centre



Supporting materials

e FoF fraction of execution time

e [oF data locality and neighbor search
e FoF bottlenecks and remedies

e [oF performance results

e Benefits of data re-layout

e 3D binning illustration

e Why AoS may remain good

e Transpose AoS to SoA in registers

e miniMD

13.07.2015 Leibniz Supercomputing Centre



m Why Friends-of-Friends?

@ lreegrav. gg SPH domain @ peano g conduction

Friends-of-Friends (FOF) computations ~ mteewait gy densimbal i predict sfrcool/bh g misc
consume half of the Gadget execution =~ mPMorav g hydimbal gy kicks/io

time at late simulation times.
Halo finder component using the 100
Subfind algorithm.

time [hours]

80

The FOF component is integrated into &0
the Gadget workflow.

Tree-walk %

FoF computations 20
0
0.0

Simulation time (norm.)

15.07.2015 Leibniz Supercomputing Centre 9




Bottlenecks and remedies

« Peculiar features of the current implementation:

No particle rearrangement needed at sorting stage — data locality already enforced at global
time steps.

Optimization opportunity — the sort information is not needed after the selection/truncation

o Resulting strategy for optimisation:

Replaced complete sorting with partial sorting so that the final neighbor list meets only
the following property:
distli <distlk , for each /<A
O(N) complexity — This optimization becomes more significant for very large neighbor lists
20-35% improvement on IVB, 10—20% on KNC

Impact on KNC less impressive — KNC-optimized default gsort() implementation?

15.07.2015 Leibniz Supercomputing Centre



m Performance results

gselect vs. gsort gselect vs. gsort in Gadget's FoF
1,0E+02 40%
1,0E+01 £ 35%
Q.
& 1,08400 o 30%
py & 25%
€ 1,0£-01 -
E S 20%
. | (@]
S 1,0E-02 —®—qsort s 15%
2 1,0E-03 —®—qselect £ 10%
1,0E-04 3 5% I
1,0E-05 0% -
1 8 64 512 4096 32768 262144 1 2 4 8 16 32 60 120 240
H#threads

Array size (kB)

M lvy-Bridge (affinity per socket) B MIC (scatter affinity)

Complexity really pays off at large scales

o Less impressive impact within Gadget

- Neighbor list to select from is rather small (approx. 500 particles)

- Parallelization overhead of the current implementation trims the benefits in higher thread counts

15.07.2015 Leibniz Supercomputing Centre

11



Lessons learnt and future directions

e Our approach to particle selection is effective in cases where:

Data locality is guaranteed in the input data layout;
Full neighbor sorting is not needed in the algorithm.

e With larger neighbor list, it may be even more convenient.

e What about the performance on the Xeon Phi?

15.07.2015

Leibniz Supercomputing Centre

12



FoF algorithm — Original implementation

todo_particle_list = particle_list
while not empty(todo_particle_list):
for p in todo_particle_list:

ngblist = get_neighbors(p, Hsml) # Get the nearest neighbors physically
gsort(ngblist) # Complexity O(Nlog/V)

ngblist = ngblist[:K] # Keep the K nearest elements

for n in ngblist: # Iterate over the neighbors

compute_interactions(p, n)
todo_particle_list = mark_elements_to_recompute(particle_list)

13.07.2015 Leibniz Supercomputing Centre 13



Benefits of data re-layout (1)

e Increased spatial locality - lower cache and TLB misses
- Eliminate non-needed struct members (LRZ)

e Increase temporal locality
- Limit the scope of search for neighbors within cutoff, if arranged properly

e Combine with spatial sort of atom data for better temporal locality
Neighbors of next atom in loop likely to overlap with current atom
- Improve cache efficiency for thread hot-teams

- Reduce vector inefficiency due to cutoff check in force calc (note that it may be ok to
check neighbors beyond the cutoff, if that helps vectorization efficiency by reducing
conditional branching)

- Create the possibility of unit stride accesses
- Better HW prefetching
- Replace gathers with vector loads

13.07.2015 Leibniz Supercomputing Centre



Benefits of data re-layout (2)

Create the possibility of padding, for the sake of aligning structs
- Atom data is not split across cache lines
- Compiler has more flexibility for repacking as SoA into vector registers

Load balancing

- Avoid the situation where some particles have a disproportionately larger fraction of
neighbors whose particle data has a longer-latency access, e.q. is in a different node or
tile

Improved vector efficiency

- "Dummy” atoms placed at infinity will always fail cutoff checks, and can be used to
ensure number of neighbours % VLEN ==

Communication hiding

- Separating local/remote neighbors enables remote neighbors to be processed either first
(to overlap comms), differently (to avoid force communication) or somewhere else (on
the host)

13.07.2015 Leibniz Supercomputing Centre



inni ' Q7 '@ O
3D binning p S
| / ® @ O \
/ o  ©\©®
e ©C o9 o
°© o _|o
. . O ® o
e Particles with same color are o | ©
contiguous in memory \ ® o © © /®
e Bottom picture shows a sort L\ O /@ @,
by current <x,y,z> location = @ ® o =
/ o ©
y o ® © \
/ o _©\°
° © 00 o
O [c
O o
\ ~ o O/
n o _@® /@ O,

13.07.2015 Leibniz Supercomputing Centre



m Why AoS may remain good

e Random access to elements in an array of structures, all members in cache line

Structure of Arrays (SoA)

All elements potentially on separate cachelines, especially as i, j, k, and m spread out.
(higher cache pressure per iteration and less efficient use of L1 cache ports)

Memory HHHEHHHHHHH

@\ Q:\’ 03) e Q‘:) o/(o Q:\ @Q) @o, D S o\
<§ N N N N N <§ <§ N & & &
Q Q S S P Q Q S S S S SN
& S S o) & & & S & v v v
> > > > > > > > > S & &
& & & & & & & & & o K3 3

Array of Structures (AoS)

Elements for the same index located on the same cacheline.
(lower cache pressure per iteration and more efficient use of L1 cache ports)

Memory = - =)

¢ ¢’ % 3
S o & &
S
v
C

13.07.2015 Leibniz Supercomputing Centre 17



Transpose from AoS to SoA in registers

Random access to elements in an array of structures, all members in cache line
Gather vector-length (vlen) elements

Transpose them explicitly with shuffles, etc., into packed registers, so the

corresponding member for vlen elements can be operated on with SIMD

13.07.2015

Justifiable with adequate reuse (NAMD, miniMD), many-body potentials

Atom jO| |[Atom j1]| [Atom 2| |[Atom 3| [Atom j4| |Atom 5| |[Atom j6| [Atom 7
xO0|yO|zO|wO| |x1|yl|zl|wl| [x2|y2|z2|w2| |x3|y3|z3|w3| |x4|yd|z4|wa| |x5]|y5|z5|w5| |x6|yE|z6 |w6| |x7|y7 |27 |w7

8X vIoadunM x X X
Atom 1 jO| |Atom i3 j2| |[Atom j5 j4| |Atom 17 j6
ZMMO1|w]jz1|y1 x1{wO|z0|y0|x0| |ZMM23|w3|z3|y3|x3|w2|z2|y2|x2| |ZMMA45|w5(z5|y5|{x5|w4|z4|y4Ix4| |[ZMM67|w7|z7|y7|x7|wb|z6|y6{x6
4x Vpermf32x
3x swizzle_epi64

ZMMO |x7|x6(x5|x4(x3|x2(x1|x0 Z/MML1 |y7|y6|y5|y4{y3|y2(yl|y0 ZMM2 |27|26|2524 23222120

Leibniz Supercomputing Centre

18



miniMD Gather/Scatter Optimizations

Ashish Jha




MD: Force Compute

for(inti =0; i < nlocal; i++) { //iterate through all Atom [864000];
neighs = &neighbor.neighbors[i * neighbor.maxneighs];
const int numneighs = neighbor.numneighli];
const MMD_float xtmp = x[i * PAD + O];
const MMD_float ytmp = x[i * PAD + 1];
const MMD_float ztmp = x[i * PAD + 2];

MMD_ float fix = O;
MMD_float fiy = O;
MMD_ float fiz = O;

for(int k = 0; k < numneighs; k++) { //iterate over Neighbors of i'th Atom

const int j = neighs[k]; Gather Code
const MMD_float delx = xtmp - x[j * PAD + 0]; /
const MMD_float dely = ytmp - x[j * PAD + 1];

const MMD_float delz = ztmp - x[j * PAD + 2];
const MMD_float rsq =delx * delx + dely * dely + delz * delz;

if(rsq < cutforcesq) {
const MMD_float sr2 =1.0/ rsq;
const MMD_float sr6 =sr2 * sr2 * sr2;
const MMD_float force =48.0 * sr6 * (sr6 - 0.5) * sr2;
fix +=delx * force;
fiy +=dely * force;
fiz +=delz * force;

if(EVFLAG) {
t_eng_vdwl +=sr6 * (sr6 - 1.0);
t_virial +=delx * delx * force + dely * dely

}
} //for k
f[i * PAD + 0] += fix; Scatter
f[i * PAD + 1] +=fiy; /f
f[i * PAD + 2] +=fiz;
}Y//fori

Neighbors “rebuilt” at certain time-step and random

intel)

Software & Services Group
S% tware




HW G/S ICC codegen for KNC:

Impl: HW vs. SW Gather

Atom jO| |[Atom j1| [Atom j2| [Atom j3| |Atom j4| |Atom j5] |Atom j6| |Atom j7 "gather_scatter_loop_unroll=7;

x0|yo| z0fwo| [x1|y1|z1|wa| [x2]y2]z2|w2| |x3|ya]z3|wa| [xa]ya|zafwa] [xs|ys|zs|ws| [xe]ye|z6fwe] [x7[y7]27|w7 Useggather_scaﬁer_hi"t=°”"
..L769:
vgatherdpd (%r15,%zmm18,8), %zmm19{%k3}

jkzd  ..L768, %k3
; vgatherdpd (%r15,%zmm18,8), %zmm19{%k3}
I vgatherdpd (%r15,%zmm18,8), %zmm19{%k3}
vgatherdpd (%r15,%zmm18,8), %zmm19{%k3}
vgatherd vgather vgatherdp vgatherdpd (%r15,%zmm18,8), %zmm19{%k3}
vgatherdpd (%r15,%zmm18,8), %zmm19{%k3}
|20 xefx3 3] [z yAvelyslydyalyzlyaly M2 27]2625]24]23]22] 1|0 gatherdpd (%r15,%zmm18,8), %zmm1{%6k3)
vgatherdpd (%r15,%zmm18,8), %zmm19{%k3}
jknzd  ..L769, %k3

..L768:

Atom jO| |Atom j1| |Atom j2| |Atom j3]| |Atom j4| |[Atom j5| |[Atom j6| |[Atom j7

SW G/S — taking advantage of spatial locality of
x0|y0|zO|w0 x1|y1|21|w1 x2|y2|22|w2 x3|y3|z3|w3 x4|y4|z4|w4 x5|y5|25|w5 x6|y6|26|w6 x7|y7|z7|w7

elements of an Atom

8x vloadunpackl Similar opportunity in “neighbor_build” function as
in “Force_Compute”

Atom j1 jo| [Atom i3 j2| [Atom 5 j4| [Atom j7 j6
; zvmvot|wilz1y1xtwolzolyolxd| [zmm23|w3z3ly3lx3lwalz2ly2fx2| [zvmas|wzs|ys|xslwalzalydlxdl {zmme7|wAz7ly7Ix7 we|z6]ye|x6

Full “function” implemented in Intrinsic

KNC, HSW
4x Vpermf32x

3x swizzle_epi6d

ZMMO | x 7| x6| x5 x41x3| x2| x 1| x |ZMM1|y7y y5y4ly3ly2lylly ZMM2|z7|26|25|z4|23|z2|z1{z0

MD Apps are G/S intensive
SW G/S takes advantage of “spatial locality” of Atom elements ]
intel)

Software & Services Group
Software




Performance App-level

miniMD v1.2 Full Neighbor List, 864K atoms, 100 TimeSteps, DP FP
All meas on cthor-knc2. Time in sec (lower is better)
Measurements Gains: C-Code/Intrinsic
Xeon 2S IVB Xeon Phi KNC Xeon 2S IVB Xeon Phi KNC
Baseline C code: HW G/S; autovectorized by ICC

2.1 2.6 1.00 1.00
Intrinsic SW G/S: Force & Neigh func for KNC, Force for IVB
1.76 2.12 1.19 1.23

* Older miniMD; results at App-level
* No Data layout changes!!!

— shows feasibility and impact of improving data locality to the Vector Compute units w/o
fundamental code changes

* Latest Intel Compiler now able to incorporate this optimization by
identifying AoS patterns

— some restrictions, not all cases

are

Software & Services Group




